from utils import retrive_data, split from model import train, gain_accuracy_train from sklearn.metrics import confusion_matrix,matthews_corrcoef,accuracy_score import xgboost as xgb import pandas as pd import pickle import argparse def main(args): labeled,labeled_small,to_remove = retrive_data(reload_data=args.reload_data,threshold_under_represented=0.5,path='/home/agobbi/Projects/PID/datanalytics/PID/src') with open('to_remove.pkl','wb') as f: pickle.dump(to_remove,f) dataset,dataset_test = split(labeled_small if args.use_small else labeled , SKI_AREA_TEST= 'Klausberg', SEASON_TEST_SKIAREA = 'Kronplatz', SEASON_TEST_YEAR= 2023, use_smote = args.use_smote, weight_type = 'sqrt' ) if args.retrain: print('OPTUNA hyperparameter tuning, please wait!') best_model,params_final = train(dataset,n_trials=args.n_trials,timeout=600,num_boost_round=600) feat_imp = pd.Series(best_model.get_fscore()).sort_values(ascending=False) with open('best_params.pkl','wb') as f: pickle.dump([params_final,feat_imp,best_model],f) else: with open('best_params.pkl','rb') as f: params_final,feat_imp,best_model = pickle.load(f) #for retriving prediction must convert to DMatrix type tmp_train = xgb.DMatrix(dataset.X_train[best_model.feature_names],dataset.y_train,enable_categorical=True) tmp_valid = xgb.DMatrix(dataset.X_valid[best_model.feature_names],dataset.y_valid,enable_categorical=True) preds_class_valid = best_model.predict(tmp_valid) preds_class_train= best_model.predict(tmp_train) print('##################RESULT ON THE TRAIN SET#####################') print(confusion_matrix(dataset.y_train,preds_class_train.argmax(1))) print(f'MCC:{matthews_corrcoef(dataset.y_train,preds_class_train.argmax(1))}') print(f'ACC:{accuracy_score(dataset.y_train,preds_class_train.argmax(1))}') print('##################RESULT ON THE VALIDATION SET#####################') print(confusion_matrix(dataset.y_valid,preds_class_valid.argmax(1))) print(f'MCC:{matthews_corrcoef(dataset.y_valid,preds_class_valid.argmax(1))}') print(f'ACC:{accuracy_score(dataset.y_valid,preds_class_valid.argmax(1))}') if args.retrain_last_model: tot,bst_FS,FS = gain_accuracy_train(dataset,feat_imp,num_boost_round=600,params=params_final) with open('best_params_and_final_model.pkl','wb') as f: pickle.dump([tot,bst_FS,FS],f) else: with open('best_params_and_final_model.pkl','rb') as f: tot,bst_FS,FS = pickle.load(f) dtest_FS = xgb.DMatrix(dataset_test.X_test_area[bst_FS.feature_names],dataset_test.y_test_area,enable_categorical=True,) dtest_season_FS = xgb.DMatrix(dataset_test.X_test_season[bst_FS.feature_names],dataset_test.y_test_season,enable_categorical=True,) preds_class_test = bst_FS.predict(dtest_FS) preds_class_test_season = bst_FS.predict(dtest_season_FS) mcc = matthews_corrcoef(dataset_test.y_test_area,preds_class_test.argmax(1)) acc = accuracy_score(dataset_test.y_test_area,preds_class_test.argmax(1)) cm = confusion_matrix(dataset_test.y_test_area,preds_class_test.argmax(1)) print(f'RESULT ON THE TEST SKI AREA {mcc=}, {acc=}, \n{cm=}') mcc = matthews_corrcoef(dataset_test.y_test_season,preds_class_test_season.argmax(1)) acc = accuracy_score(dataset_test.y_test_season,preds_class_test_season.argmax(1)) cm = confusion_matrix(dataset_test.y_test_season,preds_class_test_season.argmax(1)) print(f'RESULT ON THE TEST SKI SEASON {mcc=}, {acc=}, {cm=}') if __name__ == "__main__": parser = argparse.ArgumentParser(description='Train Optuna XGBOOST model') parser.add_argument('--use_small', action='store_true', help="Aggregate under represented input classes (es: rare country)") parser.add_argument('--use_smote', action='store_true', help='oversampling underrperesented target labels') parser.add_argument('--retrain', action='store_true', help='Retrain the optuna searcher') parser.add_argument('--reload_data', action='store_true', help='Dowload data from db') parser.add_argument('--retrain_last_model', action='store_true', help='retrain the last model') parser.add_argument('--n_trials', type=int,default=1000, help='number of trials per optuna') args = parser.parse_args() main(args) #python main.py --use_small --retrain --retrain_last_model --n_trials=10 --reload_data