{ "cells": [ { "cell_type": "code", "execution_count": 4, "id": "7c5d059b-ed8a-4e2e-9420-25890f648895", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_42878/2472232159.py:7: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n", " df = pd.read_sql('select * from data_safeidx', con=engine)\n" ] } ], "source": [ "import pandas as pd\n", "import psycopg2 as pg\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "engine = pg.connect(\"dbname='safeidx' user='fbk_mpba' host='172.104.247.67' port='5432' password='fbk2024$'\")\n", "df = pd.read_sql('select * from data_safeidx', con=engine)" ] }, { "cell_type": "code", "execution_count": 6, "id": "03aa2a04-93fa-469e-a678-685cacdebd6c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | difficulty | \n", "cause | \n", "town | \n", "province | \n", "gender | \n", "equipment | \n", "helmet | \n", "destination | \n", "diagnosis | \n", "india | \n", "age | \n", "country | \n", "injury_side | \n", "injury_general_location | \n", "evacuation_vehicles | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "novice | \n", "fall_alone | \n", "SIKLOS | \n", "\n", " | F | \n", "ski | \n", "None | \n", "hospital_emergency_room | \n", "distortion | \n", "None | \n", "32.0 | \n", "Ungheria | \n", "L | \n", "lower_limbs | \n", "[akja] | \n", "
| 1 | \n", "advanced | \n", "fall_alone | \n", "MALMO | \n", "\n", " | M | \n", "ski | \n", "None | \n", "hospital_emergency_room | \n", "bruise | \n", "None | \n", "32.0 | \n", "Svezia | \n", "R | \n", "skull_or_face | \n", "[akja] | \n", "
| 2 | \n", "advanced | \n", "fall_alone | \n", "CALDARO | \n", "BZ | \n", "F | \n", "ski | \n", "None | \n", "domicile | \n", "other | \n", "None | \n", "12.0 | \n", "Italia | \n", "R | \n", "None | \n", "[snowmobile] | \n", "
| 3 | \n", "advanced | \n", "collision_person | \n", "LINZ | \n", "\n", " | M | \n", "ski | \n", "None | \n", "hospital_emergency_room | \n", "bruise | \n", "None | \n", "58.0 | \n", "Austria | \n", "R | \n", "lower_limbs | \n", "[snowmobile] | \n", "
| 4 | \n", "advanced | \n", "collision_person | \n", "RUSAVA | \n", "\n", " | M | \n", "ski | \n", "None | \n", "other | \n", "bruise | \n", "None | \n", "25.0 | \n", "Repubblica Ceca | \n", "L | \n", "lower_limbs | \n", "[other] | \n", "
XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=True, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=1000, n_jobs=None, num_class=2,\n",
" num_parallel_tree=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=True, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=1000, n_jobs=None, num_class=2,\n",
" num_parallel_tree=None, ...)