{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "7c5d059b-ed8a-4e2e-9420-25890f648895", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_46791/2472232159.py:1: DeprecationWarning: \n", "Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n", "(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n", "but was not found to be installed on your system.\n", "If this would cause problems for you,\n", "please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n", " \n", " import pandas as pd\n", "/tmp/ipykernel_46791/2472232159.py:7: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n", " df = pd.read_sql('select * from data_safeidx', con=engine)\n" ] } ], "source": [ "import pandas as pd\n", "import psycopg2 as pg\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "engine = pg.connect(\"dbname='safeidx' user='fbk_mpba' host='172.104.247.67' port='5432' password='fbk2024$'\")\n", "df = pd.read_sql('select * from data_safeidx', con=engine)" ] }, { "cell_type": "code", "execution_count": 2, "id": "03aa2a04-93fa-469e-a678-685cacdebd6c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | difficulty | \n", "cause | \n", "town | \n", "province | \n", "gender | \n", "equipment | \n", "helmet | \n", "destination | \n", "diagnosis | \n", "india | \n", "age | \n", "country | \n", "injury_side | \n", "injury_general_location | \n", "evacuation_vehicles | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "novice | \n", "fall_alone | \n", "SIKLOS | \n", "\n", " | F | \n", "ski | \n", "None | \n", "hospital_emergency_room | \n", "distortion | \n", "None | \n", "32.0 | \n", "Ungheria | \n", "L | \n", "lower_limbs | \n", "[akja] | \n", "
| 1 | \n", "advanced | \n", "fall_alone | \n", "MALMO | \n", "\n", " | M | \n", "ski | \n", "None | \n", "hospital_emergency_room | \n", "bruise | \n", "None | \n", "32.0 | \n", "Svezia | \n", "R | \n", "skull_or_face | \n", "[akja] | \n", "
| 2 | \n", "advanced | \n", "fall_alone | \n", "CALDARO | \n", "BZ | \n", "F | \n", "ski | \n", "None | \n", "domicile | \n", "other | \n", "None | \n", "12.0 | \n", "Italia | \n", "R | \n", "None | \n", "[snowmobile] | \n", "
| 3 | \n", "advanced | \n", "collision_person | \n", "LINZ | \n", "\n", " | M | \n", "ski | \n", "None | \n", "hospital_emergency_room | \n", "bruise | \n", "None | \n", "58.0 | \n", "Austria | \n", "R | \n", "lower_limbs | \n", "[snowmobile] | \n", "
| 4 | \n", "advanced | \n", "collision_person | \n", "RUSAVA | \n", "\n", " | M | \n", "ski | \n", "None | \n", "other | \n", "bruise | \n", "None | \n", "25.0 | \n", "Repubblica Ceca | \n", "L | \n", "lower_limbs | \n", "[other] | \n", "
XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=True, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=1000, n_jobs=None, num_class=5,\n",
" num_parallel_tree=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=True, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=1000, n_jobs=None, num_class=5,\n",
" num_parallel_tree=None, ...)